一些比赛用的模板
数论
快速幂 O(logn)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
| ll mod_pow(ll x,ll n, ll mod){ ll res=1; while(n>0){ if(n&1)res=res*x%mod; x=x*x%mod; n>>=1; } return res; }
ll mod_pow(ll x,ll n, ll mod){ if(n==0) return 1; ll res=mod_pow(x*x%mod,n/2,mod); if(n&1) res=res*x%mod; return res; }
|
矩阵快速幂
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
| typedef long long ll; typedef vector<int> vec; typedef vector<vec> mat; const int M=1e8+7;
mat mul(mat &A,mat &B){ mat C(A.size(),vec(B[0].size())); for(int i=0;i<A.size();i++){ for(int k=0;k<B.size();k++){ for(int j=0;j<B[0].size();j++){ C[i][j]=(C[i][j]+A[i][k]*B[k][j])%M; } } } return C; } mat pow(mat A,ll n){ mat B(A.size(),vec(A.size())); for(int i=0;i<A.size();i++){ B[i][i]=1; } while(n>0){ if(n&1) B=mul(B,A); A=mul(A,A); n>>=1; } return B; }
|
GCD 欧几里得算法 O(log max(a,b))
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
| int gcd(int a,int b){ if(b==0) return a; return gcd(b,a%b); }
F(x)是斐波那契数列 GCD(F[n],F[m])=F[gcd(n,m)
int extgcd(int a,int b,int& x,int& y){ int d=a; if(b!=0){ d=extgcd(b,a%b,y,x); y-=(a/b)*x; } else{ x=1; y=0; } return d; }
|
素数筛表
时间复杂度接近O(n)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
| int vis[MAXN]; int prime[MAXN]; void Prime() { int cnt=0; for(int i=2;i<=n;i++) { if(!vis[i]) prime[cnt++]=i; for(int j=0;j<cnt&&i*prime[j]<=n;j++) { vis[i*prime[j]]=i; if(i%prime[j]==0) break; } } }
|
二次探测定理:
奇素数p(即除2外的素数)
$xmodp^2=1$的解只有x=1和x=p-1
素数定理:
随着x的增长,$π(x)/(x/ln(x))=1$,(π(x)为小于x的素数的个数)
递推式转矩阵
费马小定理和欧拉公式
费马小定理(Fermat’s little theorem)是数论中的一个重要定理,在1636年提出。如果p是一个质数,而整数a不是p的倍数,则有$a^{p-1}≡1(mod p)$。

费马小定理:$2^nmodm=2^{nmod(m-1)}mod~~m$ (这个怎么推我还不知道)
在数论中,欧拉定理,(也称费马-欧拉定理)是一个关于同余的性质。欧拉定理表明,若n,a为正整数,且n,a互质,则: $a^{φ(n)}≡1(mod n)$
φ(n)为欧拉函数,定义为不超过n的整数中与n互素的个数。
欧拉降幂公式: $a^b≡a^{bmodφ(n)+φ(n)}mod n$
1 2 3 4 5 6 7 8 9 10 11 12
| int euler_phi(int n){ int res=n; for(int i=2;i*i<=n;i++){ if(n%i==0){ res=res/i*(i-1); for(;n%i==0;n/=i); } } if(n!=1) res=res/n*(n-1); return res; }
|
卢卡斯定理
Lucas定理是用来求 c(n,m) mod p,p为素数的值。
表达式:C(n,m)%p=C(n/p,m/p)*C(n%p,m%p)%p
Lucas定理:我们令n=sp+q , m=tp+r .(q ,r ≤p)
那么:

</div>
BBP公式
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
| #include <iostream> #define MAX_C 56000 int a = 10000, b, c = MAX_C, d, e, f[MAX_C + 1], g, n, ans, cnt; using namespace std;
int main() { while(~scanf("%d", &n)){ for (; b - c; ) f[b++] = a / 5; for (; d = 0, g = c * 2; c -= 14, ans = e + d / a, e = d % a, cnt++) { if (cnt * 4 > n) break; for (b = c; d += f[b]*a, f[b] = d % --g, d /= g--, --b; d *= b); } if (n % 4 == 0) cout << (ans / 1000); else if (n % 4 == 1) cout << ((ans / 100) % 10); else if (n % 4 == 2) cout << ((ans / 10) % 10); else if (n % 4 == 3) cout << (ans % 10); printf("\n");} return 0; }
|
图论
最短路问题
任意两点间的最短路问题(Floyd算法)
1 2 3 4 5 6 7 8 9 10 11
| int d[MAX_v][MAX_V] int V void Floyd(){ for(int k=0;k<V;k++){ for(int i=0;i<V;i++){ for(int j=0;j<V;j++){ d[i][j]=min(d[i][j],d[i][k]+d[k][j]); } } } }
|
单源最短路问题(Dijkstra算法)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34
| int cost[MAX_V][MAX_V]; int d[MAX_V]; bool used[MAX_V]; int V; int prev[MAX_V];
void Dijkstra(int s){ fill(d,d+v,INF); fill(used,used+V,false); fill(prev,prev+V,-1); d[s]=0; while(true){ int v=-1; for(int u=0;u<V;u++){ if(!used[u]&&(v==-1||d[u]<d[v])) v=u; } if(v==-1) break; used[v]=true; for(int u=0;u<V;u++){ if(d[u]>d[v]+cost[v][u]){ d[u]=d[v]+cost[v][u]; prev[u]=v; } } } }
vector<int> get_path(int t){ vector<int> path; for(;t!=-1;t=prev[t]) path.push_back(t); reverse(path.begin(),path.end()); return path; }
|
最小生成树
Prim算法
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
| int cost[MAX_V][MAX_V]; int mincost[MAX_V]; bool used[MAX_V]; int V;
int prim(){ for(int i=0;i<V;i++){ mincost[i]=INF; used[i]=false; } mincost[0]=0; int res=0; while(true){ int v=-1; for(int u=0;u<V;u++){ if(!used[u]&&(v==-1||mincost[u]<mincost[v])) v=u; } if(v==-1) break; used[v]=true; res+=mincost[v]; for(int u=0;u<V;u++){ mincost[u]=min(mincost[u],cost[v][u]); } } return res; }
|
Kruskal算法
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53
| struct edge{ int u,v,cost; }; bool comp(const edge& e1,const edge& e2){ return e1.cost < e2.cost; }
int par[MAX_N] int rank[MAX_N]
void init_union_find(int n){ for(int i=0;i<n;i++){ par[i]=i; rank[i]=0; } }
int find(int x){ if(par[x]==x){ return x; }else{ return par[x]=find(par[x]); } }
void unite(int x,int y){ x=find(x); y=find(y); if(x==y) return; if(rank[x]<rank[y]){ par[x]=y; }else{ par[y]=x; if(rank[x]==rank[y])rank[x]++; } }
edge es[MAX_E]; int V,E; int kruskal(){ sort(es,es+E,comp); init_union_find(V); int res=0; for(int i=0;i<E;i++){ edge e=es[i]; if(!same(e.u,e.v)){ unite(e.u,e.v); res+=e.cost; } } return res; }
|
最大流最小割问题
摘自:https://blog.csdn.net/yo_bc/article/details/72825629
FORD-FULKERSON(FF)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85
| #include <algorithm> #include <iostream> #include <string.h> #include <cstdio> #include <stack> using namespace std; const int inf = 0x7fffffff; const int maxn = 205; struct node { int v, w, next; }edge[maxn*maxn]; int no, n, m; int head[maxn], pre[maxn], rec[maxn], flow[maxn]; stack<int> stk; void init() { no = 0; memset(head, -1, sizeof head); }
void add(int u, int v, int w) { edge[no].v = v; edge[no].w = w; edge[no].next = head[u]; head[u] = no++; edge[no].v = u; edge[no].w = 0; edge[no].next = head[v]; head[v] = no++; } int dfs(int S, int T) { memset(pre, -1, sizeof pre); while(!stk.empty()) stk.pop(); pre[S] = S; flow[S] = inf; stk.push(S); while(!stk.empty()) { int top = stk.top(); stk.pop(); int k = head[top]; while(k != -1) { if(pre[edge[k].v] == -1 && edge[k].w > 0) { flow[edge[k].v] = min(flow[top], edge[k].w); pre[edge[k].v] = top; rec[edge[k].v] = k; stk.push(edge[k].v); } k = edge[k].next; } if(pre[T] != -1) return flow[T]; } return -1; } int FF(int s, int t) { int ans = 0, add; while((add = dfs(s, t)) != -1) { ans += add; int k = t; while(k != s) { edge[rec[k]].w -= add; edge[rec[k]^1].w += add; k = pre[k]; } } return ans; } int main() { ios::sync_with_stdio(0); int u, v, w; while(cin >> m >> n) { init(); for(int i = 0; i < m; ++i) { cin >> u >> v >> w; add(u, v, w); } cout << FF(1, n) << endl; } return 0; }
|
Edmonds-Karp(EK)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85
| #include <algorithm> #include <iostream> #include <string.h> #include <cstdio> #include <queue> using namespace std; const int inf = 0x7fffffff; const int maxn = 205; struct node { int v, w, next; }edge[maxn*maxn]; int no, n, m; int head[maxn], pre[maxn], rec[maxn], flow[maxn]; queue<int> q; void init() { no = 0; memset(head, -1, sizeof head); }
void add(int u, int v, int w) { edge[no].v = v; edge[no].w = w; edge[no].next = head[u]; head[u] = no++; edge[no].v = u; edge[no].w = 0; edge[no].next = head[v]; head[v] = no++; } int dfs(int S, int T) { memset(pre, -1, sizeof pre); while(!q.empty()) q.pop(); pre[S] = S; flow[S] = inf; q.push(S); while(!q.empty()) { int top = q.front(); q.pop(); int k = head[top]; while(k != -1) { if(pre[edge[k].v] == -1 && edge[k].w > 0) { flow[edge[k].v] = min(flow[top], edge[k].w); pre[edge[k].v] = top; rec[edge[k].v] = k; q.push(edge[k].v); } k = edge[k].next; } if(pre[T] != -1) return flow[T]; } return -1; } int EK(int s, int t) { int ans = 0, add; while((add = dfs(s, t)) != -1) { ans += add; int k = t; while(k != s) { edge[rec[k]].w -= add; edge[rec[k]^1].w += add; k = pre[k]; } } return ans; } int main() { ios::sync_with_stdio(0); int u, v, w; while(cin >> m >> n) { init(); for(int i = 0; i < m; ++i) { cin >> u >> v >> w; add(u, v, w); } cout << EK(1, n) << endl; } return 0; }
|
Dinic
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233
| #include <algorithm> #include <iostream> #include <string.h> #include <cstdio> #include <queue> using namespace std; const int inf = 0x7fffffff; const int maxn = 205; struct node { int v, w, next; }edge[maxn*maxn]; int dis[maxn], pre[maxn], rec[maxn], head[maxn], block[maxn]; int n, m, no; queue<int> q;
inline void add(int u, int v, int w) { edge[no].v = v; edge[no].w = w; edge[no].next = head[u]; head[u] = no++; edge[no].v = u; edge[no].w = 0; edge[no].next = head[v]; head[v] = no++; } inline void pre_init() { no = 0; memset(head, -1, sizeof head); } void init(int S, int T) { for(int i = 0; i <= n; ++i) { dis[i] = inf; block[i] = 0; } while(!q.empty()) q.pop(); dis[S] = 0; q.push(S); while(!q.empty()) { int tp = q.front(); q.pop(); int k = head[tp]; while(k != -1) { if(dis[edge[k].v] == inf && edge[k].w) { dis[edge[k].v] = dis[tp] + 1; q.push(edge[k].v); } k = edge[k].next; } } } int dinic(int S, int T) { int top = S, ans = 0, flow = inf; pre[S] = S; init(S, T); while(dis[T] != inf) { int k = head[top]; while(k != -1) { if(edge[k].w && dis[edge[k].v] == dis[top]+1 && !block[edge[k].v]) break; k = edge[k].next; } if(k != -1) { int v = edge[k].v; flow = min(flow, edge[k].w); pre[v] = top; rec[v] = k; top = v; if(top == T) { ans += flow; v = -1; k = T; while(k != S) { edge[rec[k]].w -= flow; edge[rec[k]^1].w += flow; if(!edge[rec[k]].w) v = k; k = pre[k]; } flow = inf; if(v != -1) { top = pre[v]; k = top; while(k != S) { flow = min(edge[rec[k]].w, flow); k = pre[k]; } } } } else { block[top] = 1; top = pre[top]; if(block[S]) init(S, T); } } return ans; } int main() { ios::sync_with_stdio(0); int u, v, w; while(cin >> m >> n) { pre_init(); for(int i = 1; i <= m; ++i) { cin >> u >> v >> w; add(u, v, w); } cout << dinic(1, n) << endl; } return 0; }
#include <algorithm> #include <iostream> #include <string.h> #include <cstdio> #include <queue> using namespace std; const int inf = 0x3f3f3f3f; const int maxn = 205; const int maxm = maxn*maxn; struct node{int w; int v, next;} edge[maxm]; int pre[maxn], rec[maxn], head[maxn], block[maxn]; int dis[maxn]; int n, m, no; int S, T; queue<int> q; inline void init() { no = 0; memset(head, -1, sizeof head); } inline void add(int u, int v, int w) { edge[no].v = v; edge[no].w = w; edge[no].next = head[u]; head[u] = no++; edge[no].v = u; edge[no].w = 0; edge[no].next = head[v]; head[v] = no++; } void reset(int S, int T) { memset(dis, 0x3f, sizeof dis); memset(block, 0, sizeof block); q.push(S); dis[S] = 0; while(!q.empty()) { int top = q.front(); q.pop(); for(int k = head[top]; k != -1; k = edge[k].next) if(dis[edge[k].v] == inf && edge[k].w) dis[edge[k].v] = dis[top]+1, q.push(edge[k].v); } } int dinic(int S, int T) { int ans = 0, flow = inf; int top = S; reset(S, T); pre[S] = S; while(dis[T] != inf) { int k, tmp; for(k = head[top]; k != -1; k = edge[k].next) { if(edge[k].w && dis[edge[k].v]==dis[top]+1 && !block[edge[k].v]) break; } if(k != -1) { tmp = edge[k].v; flow = min(flow, edge[k].w); pre[tmp] = top, rec[tmp] = k; top = tmp; if(top == T) { ans += flow; tmp = -1; for(; top != S; top = pre[top]) { edge[rec[top]].w -= flow; edge[rec[top]^1].w += flow; if(!edge[rec[top]].w) tmp = top; } flow = inf; if(tmp != -1) { top = pre[tmp]; for(; top != S; top = pre[top]) flow = min(flow, edge[rec[top]].w); top = pre[tmp]; } } } else { block[top] = 1; top = pre[top]; if(block[S]) reset(S, T); } } return ans; } void mapping() { int u, v, w; for(int i = 1; i <= m; ++i) { scanf("%d %d %d", &u, &v, &w); add(u, v, w); } } int main() { while(~scanf("%d %d", &m, &n)) { S = 1, T = n; init(); mapping(); printf("%d\n", dinic(S, T)); } return 0; }
|
Shortest Augmenting Paths(SAP
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241
| #include <algorithm> #include <iostream> #include <string.h> #include <cstdio> #include <queue> using namespace std; const int inf = 0x7fffffff; const int maxn = 205; const int maxm = maxn*maxn; struct node { int v, w, next; }edge[maxm]; int dis[maxn], pre[maxn], rec[maxn], head[maxn], gap[maxn], now[maxn]; int n, m, no, up; queue<int> q;
inline void add(int u, int v, int w) { edge[no].v = v; edge[no].w = w; edge[no].next = head[u]; head[u] = no++; edge[no].v = u; edge[no].w = 0; edge[no].next = head[v]; head[v] = no++; } inline void pre_init() { no = 0; up = n; memset(head, -1, sizeof head); } void init(int S, int T) { for(int i = 0; i <= up; ++i) { now[i] = head[i]; gap[i] = 0, dis[i] = inf; } while(!q.empty()) q.pop(); dis[T] = 0; q.push(T); while(!q.empty()) { int tp = q.front(); q.pop(); ++gap[dis[tp]]; int k = head[tp]; while(k != -1) { if(dis[edge[k].v] == inf && edge[k^1].w) { dis[edge[k].v] = dis[tp]+1; q.push(edge[k].v); } k = edge[k].next; } } } int SAP(int S, int T) { int ans = 0, flow = inf, top = S; pre[S] = S; init(S, T); while(dis[S] < up) { if(top == T) { ans += flow; while(top != S) { edge[rec[top]].w -= flow; edge[rec[top]^1].w += flow; top = pre[top]; } flow = inf; } int k = now[top]; while(k != -1) { int v = edge[k].v; if(edge[k].w && dis[top] == dis[v]+1) { flow = min(flow, edge[k].w); pre[v] = top; rec[v] = k; now[top] = k; top = v; break; } k = edge[k].next; } if(k == -1) { int mind = n; if(--gap[dis[top]] == 0) break; int k = now[top] = head[top]; while(k != -1) { if(edge[k].w && mind>dis[edge[k].v]) mind = dis[edge[k].v]; k = edge[k].next; } ++gap[dis[top] = mind+1]; top = pre[top]; } } return ans; } int main() { ios::sync_with_stdio(0); int u, v, w; while(cin >> m >> n) { pre_init(); for(int i = 1; i <= m; ++i) { cin >> u >> v >> w; add(u, v, w); } cout << SAP(1, n) << endl; } return 0; }
#include <algorithm> #include <iostream> #include <string.h> #include <cstdio> #include <queue> using namespace std; const int inf = 0x3f3f3f3f; const int maxn = 205; const int maxm = maxn*maxn; struct node{int w; int v, next;} edge[maxm]; int pre[maxn], rec[maxn], head[maxn], gap[maxn], now[maxn]; int dis[maxn]; int n, m, no, up; int S, T; queue<int> q; inline void add(int u, int v, int w) { edge[no].v = v; edge[no].w = w; edge[no].next = head[u]; head[u] = no++; edge[no].v = u; edge[no].w = 0; edge[no].next = head[v]; head[v] = no++; } inline void pre_init() { no = 0; memset(head, -1, sizeof head); } void init(int S, int T) { memset(gap, 0, sizeof gap); memset(dis, 0x3f, sizeof dis); for(int i = 0; i <= up; ++i) now[i] = head[i]; while(!q.empty()) q.pop(); dis[T] = 0; q.push(T); while(!q.empty()) { int tp = q.front(); q.pop(); ++gap[dis[tp]]; int k = head[tp]; while(k != -1) { if(dis[edge[k].v] == inf && edge[k^1].w) { dis[edge[k].v] = dis[tp]+1; q.push(edge[k].v); } k = edge[k].next; } } } int SAP(int S, int T) { int ans = 0, flow = inf; int top = S; pre[S] = S; init(S, T); while(dis[S] < up) { if(top == T) { ans += flow; while(top != S) { edge[rec[top]].w -= flow; edge[rec[top]^1].w += flow; top = pre[top]; } flow = inf; } int k = now[top]; while(k != -1) { int v = edge[k].v; if(edge[k].w && dis[top] == dis[v]+1) { flow = min(flow, edge[k].w); pre[v] = top; rec[v] = k; now[top] = k; top = v; break; } k = edge[k].next; } if(k == -1) { int mind = up; if(--gap[dis[top]] == 0) break; int k = now[top] = head[top]; while(k != -1) { if(edge[k].w && mind>dis[edge[k].v]) mind = dis[edge[k].v]; k = edge[k].next; } ++gap[dis[top] = mind+1]; top = pre[top]; } } return ans; } void mapping() { int u, v, w; for(int i = 1; i <= m; ++i) { scanf("%d %d %d", &u, &v, &w); add(u, v, w); } } int main() { while(~scanf("%d %d", &m, &n)) { up = n, S = 1, T = n; pre_init(); mapping(); printf("%d\n", SAP(S, T)); } return 0; }
|
二分图
匈牙利算法
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
| bool CP[MAX][MAX]; bool used[MAX]; int linked[MAX];
bool fun(int x){ int i for (i=1;i<=N;i++){ if (CP[x][i]==true && used[i]==false) { used[i]=1; if (linked[i]==0 || fun(linked[i])) { linked[j]=x; return true; } } } return false; } int hungary(){ int ans=0; memset(linked,0,sizeof(linked)); for(int i=1;i<=M;i++){ memset(used,0,sizeof(used)); if(fun(i)) ans++; } }
|
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
|
int v1, v2; bool Map[501][501]; bool visit[501]; int link[501]; int result;
bool dfs(int x) { for (int y = 1; y <= v2; ++y) { if (Map[x][y] && !visit[y]) { visit[y] = true; if (link[y] == 0 || dfs(link[y])) { link[y] = x; return true; } } } return false; }
void Search() { for (int x = 1; x <= v1; x++) { memset(visit,false,sizeof(visit)); if (dfs(x)) result++; } }
|
博弈
巴仕博弈(Bash Game)
描述:
只有一堆n个物品,两个人轮流从这堆物品中取物,规定每次至少取一个,最多取m个。最后取光者得胜。
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
| #include<bits/stdc++.h> using namespace std; int main() { int t; cin>>t; while(t--) { int n,m; cin>>n>>m; if(n%(m+1)) cout<<"first"<<endl; else cout<<"second"<<endl; } return 0; }
|
威佐夫博弈(Wythoff Game)
描述:有两堆各若干个物品,两个人轮流从某一堆或同时从两堆中取同样多的物品,规定每次至少取一个,多者不限,最后取光者得胜
1,我们用(a[k],b[k])(a[k] ≤ b[k] ,k=0,1,2,…,n)表示两堆物品的数量并称其为局势。
2,如果甲面对(0,0),那么甲已经输了,这种局势我们称为奇异局势。
3,奇异局(举例)
首先列举人们已经发现的前几个奇异局势:(0,0)、(1,2)、(3,5)、(4,7)、(6,10)
(8,13)、(9,15)、(11,18)、(12,20)。
通过观察发现:a[0]=b[0]=0,a[k]是未在前面出现过的最小自然数,而 b[k]= a[k] + k。
4,奇异局势有如下三条性质:
1)任何自然数都包含且仅包含在一个奇异局势中。
2)任意操作都可以使奇异局势变为非奇异局势。
3)必有一种操作可以使非奇异局势变为奇异局势。
5,奇异局势公式:
a[k]=[k*(1+√5)/2],b[k]=a[k]+k。
(k=0,1,2……,[ ]表示取整)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
| #include<bits/stdc++.h> using namespace std; const double Gsr=(1+sqrt(5.0))/2; int main() { int a,b; while(~scanf("%d%d",&a,&b)) { if(a>b) swap(a,b); if(a == (int)(Gsr*(b-a))) puts("First Lose"); else puts("First Win"); } return 0; }
|
Nim博弈
描述:有n堆石子,每堆各有$a_i$课石子。Alice和Bob轮流从非空的石子堆中取走至少一颗石子。
Alice先取,取光所有石子的一方获胜。当双方都采取最优策略时,谁会获胜?
结论:计算所有$a_i$的异或值,如果非零则先手胜,为零则后手胜。
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
| #include<bits/stdc++.h> using namespace std; const double Gsr=(1+sqrt(5.0))/2; int N,A[MAX_N]; int main() { cin>>N; for(int i=0;i<N;i++) cin>>A[i]; int x=0; for(int i=0;i<N;i++) x^=A[i]; if(x!=0) puts("Alice"); else puts("Bob"); return 0; }
|
SG函数
描述:Alice和Bob在玩这样一个游戏。给定k个数字$a_1,a_2,···,a_k$。一开始,有n堆硬币,每堆各有$x_i$枚硬币。Alice和Bob轮流选出一堆硬币,从中取出一些硬币。每次所取硬币的枚数一定要在$a_1,a_2,···,a_k$当中。Alice先取,取光硬币的一方获胜。当双方都采取最优策略时,谁会获胜?
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
| int N,K,X[MAX_N],A[MAX_K];
int grundy[MAX_X+1]; void solve(){ grundy[0]=0; int max_x=*max_element(X,X+N); for(int j=1;j<=max_x;j++){ set<int> s; for(int i=0;i<K;i++){ if(A[i]<=j) s.insert(grundy[j-A[i]]); } int g=0; while(s.count(g)!=0)g++; grundy[j]=g; } int x=0; for(int i=0;i<N;i++) x^=grundy[X[i]]; if(x!=0) puts("Alice"); else puts("Bob"); }
|